Better understanding and fitting of IV curves and IEC 61853 matrix measurements

Steve Ransome (SRCL, UK)

independent PV consultant
https://www.steveransome.com/ mailto: steve@steveransome.com
17 ${ }^{\text {th }}$ PVSAT 26-28 Jun 2023
IOP, London....

Why do we need to understand IV curves and efficiency matrices versus

 Irradiance and Module Temperature ?Instantaneous power depends on the weather
p_mp (W) = fn(Irradiance G, Module Temperature T, Angle of incidence, Spectrum) also soiling, ageing etc..

- Measure vs. a range or matrix of G and T then fit a model $p _m p(G, T)$
- Calculate energy yield YA(kWh/kWp)
$\sim \sum_{\text {time }} p _m p\left(G_{\text {time }}, T_{\text {time }}\right) / k W p$ (e.g. over a year's climate)
- Check predicted vs. measured p_mp for degradation and/or faults

Typical IV curve and derived parameters

1-diode model

$$
I=\underline{I_{L}}-\underline{I_{0}}\left(\exp \left(\frac{V+I \underline{R_{s}}}{\underline{n N s V_{t h}}}\right)-1\right)-\frac{V+I \underline{R_{s}}}{\underline{R_{s h}}}
$$

Calculated gradient

$$
\left({\frac{d(I * V)}{d V} @ V=v_{-} m p}^{d V}\right)=0
$$

Typical IV curve and derived parameters

1-diode model

$$
I=\underline{I_{L}}-\underline{I_{0}}\left(\exp \left(\frac{V+I \underline{R_{s}}}{\underline{n N s V_{t h}}}\right)-1\right)-\frac{V+I \underline{R_{s}}}{R_{s h}}
$$

calculations
p_mp (W), fill factor (\%),

STC values.
Area m²

How do these parameters depend on weather values?

1 diode model

$$
I=\underline{I_{L}}-\underline{I_{0}}\left(\exp \left(\frac{V+I R_{s}}{\underline{n N s V_{t h}}}\right)-1\right)-\frac{V+I R_{s}}{\underline{R_{s h}}}
$$

Typical relative efficiency matrix $=\operatorname{PRdc}(\mathrm{G}, \mathrm{T})$
(c-Si) as on datasheets, PVSyst etc.

Typical relative efficiency matrix $=\operatorname{PRdc}(\mathrm{G}, \mathrm{T})$
(c-Si) as on datasheets, PVSyst etc.

```
pr_dc = meas eff 
```


Shape of PRdc(G, T) is dominated by these five separate effects

IV curve fit $\rightarrow 1$ diode and MLFM ${ }^{*}$ ("mechanistic loss factors model)

colours show which component 'dominates' each fit parameter

Measured IV curve

$I=I_{L}-I_{0}\left(\exp \left(\frac{V+I R_{s}}{n N s V_{t h}}\right)-1\right)-\frac{V+I R_{s}}{R_{s h}}$
Fit to 1-diode model
best fits to IV curves are limited by

- Point distribution
- Non-unique best fits
- "imperfections" such as mismatch, rollover, variable cloud during scan

Fit to MLFM

- 6+1 normalised losses from IV shape
- Characterises loss parameters vs. G, T and time

Improved matrix performance plot (with four independent parameters)

colour = chosen parameter

blue=best performance
green $=$ middle
red=worst performance

Area of squares :

α insolation $\mathrm{H}\left(\mathrm{kWh} / \mathrm{m}^{2} / \mathrm{y}\right)$

- Some standard conditions are marked e.g. STC, NOCT
- Area shows most important (large) vs. insignificant (very small) which may be outliers
- Many existing studies only model p_mp or pr_dc
- A few study i_sc, v_oc or ff
- But very few look at r_sc (${ }^{\sim}$ __shunt) and r_oc($r_{\text {r_series) }}$ which are important for energy yield and degradation

Analysing r_sc [${ }^{\sim}$ r_shunt]

meas_r_sc(G, T) Ω scatter

$$
r_{-} s c=-1 /\left(\frac{d I}{d V}_{@ V=0}\right) \sim r_{-} \text {shunt }
$$

Most models assume :
r_sc=constant or ~1/G

PVSYST has exponential fit

Analysing r_sc [${ }^{\sim}$ r_shunt]

Square area proportional to Insolation ($\mathrm{kWh} / \mathrm{m}^{2} / \mathrm{yr}$)

" $r_{-} s c$ is curved with a small -ve T sensitivity"
Most models assume :
r_sc=constant or ~1/G
PVSYST has exponential fit

norm r_sc(G, T) \% matrix

MLFM fit parameters
$=c _1 c+c _2 t *(T-25)+C_{-} 3 l g * \operatorname{LOG}_{10}(G)+C_{-} 4 g * G$

Analysing r_oc [~ r_series]

meas_r_oc(G, T) Ω scatter

"r_oc~linear v.s $1 / \mathrm{G},=r_{-} s$ @ $1 / \mathrm{G} \rightarrow 0$ "
Small Temp. coeff. dependent on Technology
d/dT <0 for cSi (metal), >0 for Thin films (TCO) Most models: r _s $(G, T)=$ constant

$r_{_} o c=-1 /\left(\frac{d I}{d V}_{@ I=0}\right)$
$=r_{\text {series }}+f n(1 / G)$

Analysing r_oc [~ r \quad _series]

Square area proportional to Insolation (kWh/m²/yr)
meas_r_oc(G, T) Ω scatter

"r_oc~linear v.s $1 / \mathrm{G},=r_{-}$s @ $1 / \mathrm{G} \rightarrow 0$ "
Small Temp. coeff. dependent on Technology
d/dT <0 for cSi (metal), >0 for Thin films (TCO)
Most models: r _s $(G, T)=$ constant

$$
\begin{aligned}
& r_{-} o c=-1 /\left(\frac{d I}{d v}_{@ I=0}\right) \\
& =r_{-} \text {series }+\mathrm{fn}^{(1 / G)}
\end{aligned}
$$

norm r_oc(G, T) \% matrix

MLFM fit parameters
$=c_{-} 1 \mathrm{c}+\mathrm{c}_{2} 2 \mathrm{t} *(\mathrm{~T}-25)+\mathrm{c} _31 \mathrm{~g} * \mathrm{LOG}_{10}(\mathrm{G})+\mathrm{c} _4 \mathrm{~g} * \mathrm{G}$

Checking performance at different sites or times (degradation etc.)

(CdTe, norm_v_oc = colour, irradiance $>$ module temperature \uparrow)

Site A) Florida (Mod \#1)

Checking performance at different sites or times (degradation etc.)

(CdTe, norm_v_oc = colour, irradiance $>$ module temperature \uparrow)

Site A) Florida (Mod \#1)

Site B) Oregon (Mod \#1)

Site C) Colorado (Mod \#2)

Any performance changes would show up in MLFM fit coefficients and colours at given conditions e.g. STC

State	Mod	param	c_1c	c_2t	c_3lg	c_4g	rmse	STC	LIC	NOCT	HTC
FL	CdTe	norm_v_oc	104.9\%	-0.27\%	14.0\%	-3.0\%	0.40\%	101.9\%	94.5\%	95.8\%	88.6\%
CO	CdTe	norm_v_oc	102.3\%	-0.25\%	11.6\%	-1.9\%	0.39\%	100.4\%	93.8\%	94.6\%	87.9\%
OR	CdTe	norm_v_oc	105.1\%	-0.28\%	13.9\%	-3.6\%	0.83\%	101.5\%	94.7\%	95.2\%	87.4\%

Square areas proportional to Insolation (kWh/m²/yr) differ due to climates

Characterising temperature coefficients (e.g. $\left.\alpha _i s c, \beta _v o c, ~ Y _p m p\right)$ Do they vary with (G, T) or are they constant ?

Most models assume Temperature Coefficients temp_coeff(G, T) = constant

Some manufacturers may provide valid ranges if they vary e.g. ">25C"

Characterising temperature coefficients (e.g. $\alpha _i s c, \beta _$voc, $\uparrow _$pmp)
Do they vary with (G, T) or are they constant ? temp_coeff $(\mathrm{G}, \mathrm{T})=$ difference between adjacent points

This method with 50-100 points allows us to easily map a temp_coeff(G,T) from a normalised loss matrix

Note :

Not yet tested on OPV, perovskite, dye or novel tandem

How do the different performance losses vary with G and T ?

Loss KEY:
i_sc (AOI, spectra, soil)
r_sc (~Rshunt)
i_ff (fill factor I drop)
v_ff (fill factor V drop)
r_oc (~Rseries)
v_oc-T (Voc temp corrected)
t_corr (temp correct)

Stacked losses under different weather conditions (cloudy then bright days)

(no correction for reflectivity or spectral response from pyranometer)

HIT 2010

CdTe 2010
Low light
CdTe 2010 Spectral gains

Conclusions

New methods have been shown using normalised loss factors to improve IV curve and matrix fits finding temperature and performance coefficients

Matrix plots (with areas ~ Insolation) are easiest to visualize and fit
Losses and causes help understand the behaviour vs. G,T and time

Please contact me for more information steve@steveransome.com

Thank you for your attention!

DATA : https://www.nrel.gov/docs/fy140sti/61610.pdf

