Better understanding and fitting of IV curves and IEC 61853 matrix measurements

Steve Ransome (SRCL, UK)

independent PV consultant

https://www.steveransome.com/ mailto: steve@steveransome.com

17th PVSAT 26-28 Jun 2023

IOP, London....

Why do we need to understand IV curves and efficiency matrices versus Irradiance and Module Temperature ?

Instantaneous power depends on the weather **p_mp (W)** = fn(Irradiance G, Module Temperature T, Angle of incidence, Spectrum) also soiling, ageing etc..

- Measure vs. a range or matrix of G and T then fit a model p_mp (G, T)
- Calculate energy yield **YA**(kWh/kWp)

~ $\Sigma_{\text{time}} p_m (G_{\text{time}}, T_{\text{time}}) / kWp$ (e.g. over a year's climate)

Check predicted vs. measured p_mp for degradation and/or faults

Typical IV curve and derived parameters

1-diode model

Typical IV curve and derived parameters

1-diode model

$$I = I_L - I_0 \left(\exp \left(rac{V + IR_s}{nNsV_{th}}
ight) - 1
ight) - rac{V + IR_s}{R_{sh}}$$

How do these parameters depend on weather values?

1 diode model

$$I = I_L - I_0 \left(\exp\left(\frac{V + IR_s}{nNsV_{th}}\right) - 1 \right) - \frac{V + IR_s}{R_{sh}}$$

Typical relative efficiency matrix = PRdc(G,T)

(c-Si) as on datasheets, PVSyst etc.

 $pr_dc = \frac{meas eff}{stc_eff} = \frac{meas p max}{stc_p max} \times \frac{1}{stc_p max}$

Typical relative efficiency matrix = PRdc(G,T)

(c-Si) as on datasheets, PVSyst etc.

 $pr_dc = \underline{meas eff}_{stc_eff} = \underline{meas p max}_{stc_pmax} \times 1$

Shape of PRdc(G, T) is dominated by these five separate effects

IV curve fit -> 1 diode and MLFM^{*} (*mechanistic loss factors model)

colours show which component 'dominates' each fit parameter

$$I = I_L - I_0 \left(\exp \! \left(rac{V + IR_s}{nNsV_{th}}
ight) - 1
ight) - rac{V + IR_s}{R_{sh}}$$

Fit to 1-diode model

best fits to IV curves are limited by

- Point distribution
- Non-unique best fits
- "imperfections" such as mismatch, rollover, variable cloud during scan

Fit to MLFM

- 6+1 normalised losses from IV shape
- Characterises loss parameters vs. G, T and time

Improved matrix performance plot (with four independent parameters)

colour = chosen parameter blue=best performance green = middle red=worst performance

Area of squares : α insolation H (kWh/m²/y**)**

Some standard conditions are marked e.g. STC, NOCT
Area shows most important (large) vs. insignificant (very small) which may be outliers

- Many existing studies only model p_mp or pr_dc
- A few study i_sc, v_oc or ff
- But very few look at r_sc (~r_shunt) and r_oc(~r_series) which are important for energy yield and degradation

Analysing r_sc [~ r_shunt]

$$\frac{r_{sc}}{r_{sc}} = -1/\left(\frac{dI}{dV_{@V=0}}\right) \sim r_{shunt}$$

PVSYST has exponential fit

Most models assume : r_sc=constant or ~1/G

Analysing r_sc [~ r_shunt]

PVSYST has exponential fit

28-Jun-23

$$r_{sc} = -1/\left(\frac{dI}{dV_{@V=0}}\right) \sim r_{shunt}$$

Square area proportional to Insolation (kWh/m²/yr)

norm r_sc(G, T) % matrix

Steve Ransome Consulting Limited

www.steveransome.com

12

Analysing r_oc [~ r_series]

"r_oc~linear v.s 1/G, = r_s @ 1/G→0" Small Temp. coeff. dependent on Technology

d/dT <0 for cSi (metal), >0 for Thin films (TCO)
Most models: r_s(G, T) = constant

Analysing r_oc [~ r_series]

i_sc

0.20

3 0.15

0.10 -

0.05 -

0.00 -

Small Temp. coeff. dependent on Technology

d/dT <0 for cSi (metal), >0 for Thin films (TCO) <u>Most models: r_s(G, T) = constant</u>

Square area proportional to Insolation (kWh/m²/yr)

norm r_oc(G, T) % matrix

28-Jun-23

www.steveransome.com

norm_r_oc 97.7% -0.04%

1.5%

-6.3%

3.8%

Checking performance at different sites or times (degradation etc.)

(CdTe, norm_v_oc = colour, irradiance → module temperature ↑)

= $c_1c + c_2t*(T-25) + c_3lg*LOG_{10}(G) + c_4g*G$

Checking performance at different sites or times (degradation etc.)

(CdTe, norm_v_oc = colour, irradiance → module temperature ↑)

Any performance changes would show up in MLFM fit coefficients and colours at given conditions e.g. STC

State	Mod	param	c_1c	c_2t	c_3lg	c_4g	rmse	STC	LIC	NOCT	HTC
FL	CdTe	norm_v_oc	104.9%	-0.27%	14.0%	-3.0%	0 <mark>.40%</mark>	101.9%	94.5%	95.8 %	88.6%
со	CdTe	norm_v_oc	102.3%	-0.25%	11.6%	-1.9%	0 <mark>.39%</mark>	100.4%	93.8%	94.6%	87.9%
OR	CdTe	norm_v_oc	105.1%	-0.28 <mark>%</mark>	13.9%	-3.6%	0.83%	101.5%	94. 7%	95.2%	87.4%

Square areas proportional to Insolation (kWh/m²/yr) differ due to climates

Characterising temperature coefficients (e.g. α_{isc} , β_{voc} , γ_{pmp}) Do they vary with (G, T) or are they constant ?

Most models assume Temperature Coefficients temp_coeff(G, T) = constant

Some manufacturers may provide valid ranges if they vary e.g. ">25C"

Characterising temperature coefficients (e.g. $\alpha_{isc}, \beta_{voc}, \gamma_{pmp}$) Do they vary with (G, T) or are they constant ? $t_{emp_{coeff}(G,T)} =$

temp_coeff(G,T) =
difference between adjacent points
Usually measured just at STC

Steve Ransome Consulting Limited

This method with 50-100 points allows us to easily map a temp_coeff(G,T) from a normalised loss matrix

Note :

Not yet tested on OPV, perovskite, dye or novel tandem

28-Jun-23

How do the different performance losses vary with G and T?

www.steveransome.com

MEASURED IV

REFERENCE IV

(ref_v_mp,

ref_i_mp)

i_loss

i_sc

r_sc i_ff

Stacked losses under different weather conditions (cloudy then bright days) (no correction for reflectivity or spectral response from pyranometer)

HIT 2010

Low light

Steve Ransome Consulting Limited

Conclusions

New methods have been shown using normalised loss factors to improve IV curve and matrix fits finding temperature and performance coefficients

Matrix plots (with areas ~ Insolation) are easiest to visualize and fit

Losses and causes help understand the behaviour vs. G,T and time

Please contact me for more information steve@steveransome.com

Thank you for your attention!

DATA : https://www.nrel.gov/docs/fy14osti/61610.pdf

SRCL

Steve Ransome Consulting Limited